
Implementing the TILT Internal Language

Leaf Petersen, Perry Cheng, Robert Harper, and Chris Stone.

December, 2000

CMU-CS-00-180

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

The TILT compiler for Standard ML represents programs internally using a predicative lambda
calculus based on Girard's Fw. At the kind level, this language is notable for containing singleton
kinds and dependent product and function kinds. Previous work [SH99] established the decidability
of type equivalence for this language.
This paper presents a typechecking algorithm for the full TILT internal language and discusses
some of the more interesting features of the language. The particular use of intensional type
analysis to handle arrays of unboxed floating point numbers is described. An extended calculus
is also introduced which permits unlabelled singletons at higher kind, in order to allow for more
compact program representation. The extended calculus is related to the restricted calculus via a
transformation that eliminates the unlabelled singletons, and the decidability of the typechecking
algorithms for both the original and extended calculus is shown.

This research was sponsored by the Advanced Research Projects Agency CSTO under the title "The Fox
Project: Advanced Languages for Systems Software", ARPA Order No. C533, issued by ESC/ENS under Contract
No. F19628-95-C-0050. The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing official policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government.

20010226 118

Keywords: singleton kinds, typed compilation, intensional polymorphism, type theory

1 Introduction

1.1 Background

The past years have seen a great deal of interest in the idea of "typed compilation": that is,
maintaining type information throughout the compilation process. This type information can be
exploited by the compiler internally to allow for optimized data representations and to do tag-free
garbage collection, as well as providing the compiler with a basis for internal correctness checks.
This work was pioneered in the TIL compiler at CMU [TMC+96]. Other recent work has also
suggested the possibility of maintaining type information through to the machine code as a form
of certification [MWCG97J.

The TIL compiler clearly demonstrated that typed compilation was both feasible and desirable.
However, TIL compiled only the core language of Standard ML: the powerful modular features
that are one of the most important elements of SML were not dealt with. The TIL Two (TILT)
compiler was aimed at addressing this shortcoming.

The TILT architecture is based around two typed intermediate languages. The initial elabora-
tion from SML source targets a structures calculus called the HIL (High Intermediate Language).
This language is relatively close to SML, and among other things provides the interface language
used for separate compilation. After elaboration (and hence typechecking), the HIL is translated to
a second typed language called the MIL (Middle Intermediate Language) through a process called
phase splitting [HMM90]. The phase splitting process maps each SML structure into separate type
and term level records, representing the static and dynamic portions of the structure. Similarly,
SML functors are mapped to type and term level functions. In this fashion, modular programs are
translated into programs containing only lambda calculus terms.

We will not address the details of phase splitting here, except to note that serving as a target of
this translation is the primary motivation for the type theory of the MIL. The MIL must be able to
express within a single lambda calculus all of the constructs of both the module language and the
core language. Singleton kinds are used to express type definitions in signatures, and dependent
product and function kinds serve to express signatures which contain definitions in terms of previous
fields.

The MIL is also the language in which almost all of the optimization passes are done. This
constrains the design of the MIL, since it must be possible to express the results all of the desired
optimizations in a typed fashion. In particular, it is important that the necessary primitives for
data representation optimizations be present at this level.

1.2 Overview

This paper gives a detailed overview of the MIL largely as implemented in the TILT compiler. The
major omission is that closure conversion and the typing of closures is not treated here.

In [SH99], Stone and Harper present an algorithm for deciding type equivalence in a lambda
calculus with singleton kinds. Section 2 of this paper describes the extension of this calculus to
the full MIL language. Design issues motivating the extensions are discussed, and algorithms for
typechecking are given along with proofs of termination.

Section 3 addresses a major practical shortcoming of the MIL: the inability to represent kinds
compactly. We present an extended calculus called the NIL which addresses these shortcomings
by providing unlabelled singletons at higher kind. The MIL algorithms and proofs are extended to
the NIL.

The main technical results of the paper are the creation of an algorithm for deciding typechecking
in a language with unlabelled singletons at higher kind, and the proofs of the decidability of
typechecking in both the core and the extended system.

Appendices A and B contain the full static semantics for the MIL and NIL, respectively.

2 Mil

2.1 Relation to A^E5

The constructor and kind level of the MIL has been studied separately by Harper and Stone [SH99].
That paper presented a core MIL-like language c
algorithm for determining constructor equivalence.
That paper presented a core MIL-like language called A<ESand gave an a sound and complete

Kinds

Constructors c ::=

Contexts A ::

= T Kind of simple constructors
1 ST(c) Singleton kind
| £(a :: K).K Dependent function kind
| II (a :: K).K Dependent product kind

= h Base types

1 a Variables
\ Xar.K.c Function
| cc Application

(c, c) Pair
| c.i Projection

• Empty context
| A[O::K] Context extension

Fig ure 1: A<~5Syntax

The syntax of the A<S5 calculus is given in figure 1. This calculus makes up the core of the MIL
language discussed here. The major type theoretic ideas of the MIL are for the most part already
present in A<ES. From a practical standpoint however, many essential components are missing
from A<£S: in particular, A<ss does not deal with the term level structure of the language. This
section will flesh out the term level extensions necessary, and will discuss their typing properties.
The kind level remains unchanged from A<E5 to MIL, but the set of constructors increases.

2.2 Constructors and types

The syntax for the constructor and kind levels of the MIL is given in figure 2. In contrast to
A<S5, the MIL language includes base constructors such as Int that are used to classify terms.
All of these base constructors are standard, with the exception of the use of the known sum type,
corresponding to the type of a sum for which the branch inhabited is known.

The MIL also includes an explicit let construct, although technically this is definable in the
calculus [SH99]. Let binding provides a means for expressing constructors more compactly, as well
as to name and reuse the results of type computations. This serves both to help make compilation
faster and to improve runtime performance, since constructors may be needed at runtime. In order
to reduce the size of programs, we elide the classifiers on the let bound variables. While this

Kinds K::= T Types
1 ST(c) Singleton kinds
| E(ct :: K).K Dependent pair kinds
| n(a :: K).K Dependent function kinds

Constructor s c ::= a Constructor variable
| /nf Integers
| Boxedfloat Boxed floating point numbers
1 /i(a,/3).(c,c) Recursive constructor
| ex c Pairs
| C -4 C Monomorphic functions
| c+ c Sums
1 c +' c Known sums
| c array Polymorphic arrays
| Aa::K.c Function
| cc Application

(c, c) Constructor pairing
I 7Ti C Projection
| let a = c in c end Constructor definition

Types r::= T(c) Constructor inclusion
| (a :: «, r) —> r Polymorphic functions
j F/oa^ Unboxed floating point numbers
| TXT Pair type
| let a = c in r end Constructor definition

Contexts A::= • Empty context
■ | A [a; : r] Constructor extension

| A[CV::K] Kind extension

The notation «i x K2 indicates £(a :: KI).K2 where a £ fv(«2)-

Figure 2: MIL Kinds, constructors and contexts

information is easily reconstructed from the definition itself, this imposes some additional work on
the compiler.

Also given in figure 2 is the syntax for the type level. Unlike the constructor level which
corresponds to the notion of types as data, the type level in a predicative system corresponds to the
notion of types as classifiers. The constructor level is included into the type level via an explicit
inclusion T(c). The type level also contains classifiers for polymorphic functions, unboxed floating
point numbers, and pairs of terms. The duplication of the the pair type at the type level indicates
the possibility of constructing pairs containing arbitrary terms (such as unboxed floats) which is
not provided for by the constructor level. For similar reasons a constructor let form is also included
in the type level so that constructors (but not types!) can be bound in types.

For presentational purposes, the static semantics of the MIL calculus is initially described using
a straightforward declarative approach which is more easily understood. This approach does not
correspond naturally to an algorithm, and hence it is will be necessary in subsequent sections to
develop an equivalent algorithmic presentation of the static semantics. The complete declarative
static semantics for the MIL language is defined in appendix A.l, but for the most part this section
will concentrate on the key non-standard elements that make the MIL theory interesting.

A ok Well formed-contexts.
A h K Well-formed kinds.
A h Ki < K2 Subkinding.
A h ci = C2 :: K Constructor equivalence.
A h c :: K Well-formed constructors.
A h T Well-formed types.
A h e : r Well-formed terms.

Figure 3: MIL declarative judgements

The judgements used to define the MIL static semantics are described in figure 3. In addition
to the expected well-formedness judgements, there is also a sub-kinding judgement. The presence
of singleton kinds means that a constructor may have multiple kinds: for example, the judgements
A h Int :: T and A h Int :: Srilnt) are both derivable in the system. The sub-kinding judgment
reflects the fact that a singleton kind gives more information than does a simple kind, and hence
should be viewed as a subtype. In particular, the key rule from the sub-kinding judgment is the
singleton rule:

A h ST{c)
SingletonL

A h ST(c) * T

which says that any well-formed singleton kind is a sub-kind of T. The sub-kinding judgment affects
constructor well-formedness via a subsumption rule

A h c :: K A\- K ■< K'
 Subkind

A h c :: K'

which says that a constructor is well-formed at kind K if it is well-formed at a subtype of K.

The main non-standard typing rules are the extensionality rules and the self rule of the con-
structor well-formedness judgement [HL94]. The self rule is the introduction rule for singleton
kinds, and says that any constructor c which is well-formed at kind T is well-formed at kind ST{C).

Ahc::T
 Selfify
Ahc::ST(c)

Accompanying this rule are the extensionality rules:

Ahc::E(a::Ki).K2 A h c.l :: K[

A \- c :: £(Q/ :: K[).K2

Ahc::E(a::Ki).K2 A h c.2 :: K'2

Ahc::/vi X «2

A h c :: n(a :: Ki).«2 A[a::«i] h ca :: K2

A h c :: n(a :: K\).K'2

SigmaExtl

SigmaExt2

PiExt

These rules essentially extend the notion of the self rule to higher kinds via eta-expansion: that
is, they allow derivations such as [a::U(ß :: T).T] ha:: U(ß :: T).Sr{a ß) For a more detailed
discussion of these rules see [SH99, HL94].

2.3 Terms

The term level MIL syntax is given in figure 4. In addition to the standard lambda calculus
constructs the MIL also provides for expression and constructor let bindings, again with the classifier
elided for reasons of program size. Unlike most lambda calculi though, the MIL also includes low
level data representation primitives (such as float boxing and unboxing primitives). In addition to
serving as the target language of phase-splitting, the MIL also serves as the object of most of the
compiler optimization phases, including inlining, common subexpression elimination, and function
specialization. These optimizations may expose opportunities for data-layout optimization, such
as eliminating redundant boxing and unboxing of floats which can only be performed if the boxing
and unboxing operations are present at the MIL level.

For similar reasons, the sum case construct in the MIL is also somewhat non-standard, as can
be seen from the sum elimination rule [HS97].

A h e : T(ci + c2)
A[x : T(ci +1 c2)] h ex : r A[x : T(a +2 c2)] h e2 : r o ,. . .
 _ bum elimination

A h caseTeof {inl(a;) =j> e1,inr(a;) =^- e2} : r

Notice that the case construct does not destructure its argument - rather, it will bind the argument
in the appropriate branch to a variable whose type is a known sum indicating the inhabited branch.
The known sum projection construct can then be used to project out the value if it is actually
required by that particular branch.

Ahe:r Ahr = T{cx +*' c2)
 Known sum elimination

A h projt(e) : T(a)

Exps e ::= = X Term variables

1 n Integers

1 / Floating point numbers
| boxfloat(e) Float boxing
| unboxfloat(e) Float unboxing
| arrayc(e,e) Polymorphic array
| sub[c](e, e) Polymorphic subscript
| fsub(e,e) Float subscript

1 (e>e> Polymorphic pairing
I Xi[c] e Polymorphic selection
| rec/ = \(a::n,x : r) : r.e Recursive function abstraction

1 elc]e Application
I inlc,ce Sum injection left
1 inrCiCe Sum injection right
| caseT e of {inl(x) =£• e,inr(.r) =4> e} Sum case
1 Pr°j;(e) Known sum projection
1 rollc(e) Recursive type introduction
| unroll(e) Recursive type elimination
| let x = eine end Expression binding
| let a = c in e end Constructor binding

Figure 4: MIL expressions

2.3.1 Type analysis

A key optimization that the original TIL compiler implemented was the use of non-uniform data
representation. Many implementations of languages with polymorphism require that all values fit
into a word. In particular, array elements must always be word-sized, which means that arrays of
64 bit floats (for example) must actually be arrays of pointers to floats. This is highly undesirable,
both because of the extra pointer indirections implicit in each lookup and because of the consequent
loss of data locality.

TIL pioneered the use of intensional polymorphism to avoid this overhead. By passing types at
runtime and allowing code to dispatch on them, unboxed floating point arrays could be used with
the appropriate subscript stride chosen at runtime. Different pieces of code could be run based on
the runtime type of polymorphic data.

The MIL calculus differs from the A™'calculus of [HM95] in that it does not contain an explicit
type analysis construct such as typerec or typecase. This does not mean however that the idea
of intensional type analysis has been abandoned: rather, the type analysis has been hidden inside
the primitives which need to use it. For example the constructor argument to the polymorphic
subscript operator sub[c](e,e) is actually used at runtime to determine the appropriate stride.
This polymorphic subscript in the language without a typecase can be thought of as a derived
form in an underlying language with typecase: that is, subscript is a polymorphic function which
internally uses typecase to choose the appropriate monomorphic subscript operator.

2.3.2 Floating point numbers

TILT deals with floating point numbers by using two different types, Boxedfloat and Float corre-
sponding to the types of boxed and unboxed floats, with appropriate term level coercions between
them. This allows the optimizer to deal directly with data representation optimizations, even at
the relatively high level of the MIL. To prevent unboxed floats from being passed to polymorphic
functions or to polymorphic primitives (such as pair injections and projections), the Float type is
restricted to the type level. The predicativity restriction therefore enforces the uniform represen-
tation of polymorphic arguments. In non-polymorphic argument positions on the other hand, the
compiler is free to use the unboxed floating point type. This is more efficient because it avoids
repeatedly boxing and unboxing arguments, and also since it allows floating point arguments to be
passed in floating point registers.

One obvious problem with this is that the type of arrays of unboxed floats cannot be constructed
in this system, since the argument to the array constructor must be a constructor (not a type).
This would seem to mean that we are unable to implement flattened float arrays. However, by using
type analysis in the array constructor as well as the subscript operator, we can avoid at least some
of the difficulty. There is nothing that prevents the Boxedfloat array type from being implemented
using unboxed floats, even though the Boxedfloat type itself may be boxed.

The downside of this is that the subscript operation will therefore actually have to do a runtime
typecase in order to determine the stride of an array of unknown types. Moreover, even when
the type is known, the subscript operation will be forced to rebox the float before returning it,
since subscripting into an array of boxed floats returns a value of type Boxedfloat. To avoid this
problem, we provide a specialized floating point subscript fsub(e,i) which is well typed only when
its argument is a Boxedfloat array, but which returns a value of type Float. This primitive avoids
the problems with using the standard polymorphic subscript in cases where the element type is
statically known to be Boxedfloat, since it need not dispatch on its constructor argument, and since
it does not need to rebox its return value.

2.4 Algorithmic typechecking

In addition to using types for runtime optimization, TILT was also designed with the idea that the
type annotations can provide a degree of self-checking within the compiler: just as a programmer
profits from the degree of error checking imposed by the typechecker, so should a compiler. With
this in mind, a good deal of work went into designing efficient algorithms for typechecking the MIL.

Modulo the constructor equivalence algorithm which is treated separately in [SH99], the com-
plete typechecking algorithm for the MIL is presented in appendix A.2. The algorithm is presented
as an alternative set of typing rules which are intended to express the structure of the algorithm: in
the few cases where more than one rule might apply the result of a single common premise indicates
which rule is applicable. The algorithmic judgements are listed in figure 5. The most noticeable
presentational change is that the constructor and term well-formedness rules have been split into
synthesis and analysis rules. For the term level, the intension is that the synthesis algorithm cor-
responds to synthesizing a type for a term: given a well-typed term, the algorithm will return
its type. In the case of the analysis algorithm the type is an additional argument: the algorithm
checks that the term argument is well formed at that type. The constructor level algorithms work
in the same manner, with the additional constraint that the kind returned by the kind synthesis
algorithm is principal.

A (= K Well-formed kinds.
A |= «i ^ «2 Subkinding.
A |= c JJ. K Kind analysis
A |= c f|- K Kind synthesis
A I- C\ = C2 :: K Constructor equivalence.
A j= r Well formed type
A (= e JJ. r Type analysis
A (= e fr r Type synthesis
A |= c H-> c' Constructor weak head normal form

Figure 5: MIL algorithmic judgements

2.4.1 Selfification

Unlike the declarative system, the algorithmic MIL has no extensionality rules and no explicit
self rule. Instead, the base-cases for the kind synthesis algorithm include implicit applications of
the self-rule. For the most part this is very straightforward: for example, the rule for the Int
constructor.

 Int
A |= Int i\ ST(Int)

In the variable rule however, it is not necessarily possible to apply the self rule directly, since the
variable may be bound at a higher kind. For variables, it is necessary to inline implicit applications
of the extensionality rules as well. This is done in the form of an auxilliary judgement called
selfification: j= c :: K = K'.

(= Q :: K = K'

 Variable
A [a :: K] (= aft K'

Selfification takes a constructor and a kind and replaces the abstract components of the kind
with singletons containing projections from and applications of the constructor. So for example,
\= a :: S(/3 :: T).T = E(ß :: ST{^I a)).Sj(7r2o). The resulting kind is therefore principal for the
variable in question.

It is interesting to note here that there are some apparently arbitrary choices to be made in
the manner in which selfification is done that are nonetheless significant from an implementation
standpoint. In particular, the singleton rule could be implemented in either of two ways.

 Singleton 1
\= c :: ST(CI) = ST(C)

Singleton 2
\=c::ST(d)±ST(d)

From a theoretical standpoint, either choice gives a correct and equivalent kind. From an imple-
mentation standpoint however, the first choice which replaces the contents of singletons tends to
yield smaller kinds. The reason for this is straightforward: since selfification always starts with
a variable as the constructor argument, the new singletons created via selfification with the re-
placement strategy always contain only paths which are relatively quite small. In practice, the

pre-existing contents of the singletons are often quite large, and are almost never smaller than a
projection from a variable.

The rule for the dependent pair kind presents a related choice. It is equally possible to retain
or eliminate occurrences of the dependent variable in the second kind, since the constructor gives
us a definition for this variable.

f= c.l :: Ki = K[\= c.2 :: {c.l/a}^ = K2

 Sigma
f= c :: E(a :: KI).K;2 = S(a :: K'J).«^

By choosing to substitute for the free occurrences of the variable, we ensure that selfification never
generates dependent pair kinds. This property extends naturally through the rest of the kind
synthesis algorithm: it is possible never to generate dependent pair kinds as the result of kind
synthesis. This means that the constructor projection rule

A |= eft S(a :: KI).K2

 Second projection
A |= 7T2 C ff {7T! c/a}K2

need not perform substitution. Eliminating this substitution yields significant efficiency gains. This
can be further improved by noticing that a side effect of using the replacement strategy for the
singleton case is that the only place that the dependent variable can occur is in the argument
decoration of function kinds. Therefore, the notion of substitution can be specialized further to
avoid the unnecessary traversal of the rest of the kind.

2.5 Termination Proofs

In this section, we show the decidability of the typechecking algorithm for the MIL calculus mod-
ulo constructor equivalence. The decidability of the constructor equivalence algorithm is proved
separately for the A<ss calculus in [SH99]. This result extends trivially to the full MIL language.
Note that the decidability of the formal system corresponds to termination of the algorithm.

In section 2.5.1 the proof of the decidability of sub-kinding is given, followed in section 2.5.2
by the proof of decidability of the well-formed kind, kind analysis, and kind synthesis judgements.
All of the proofs follow essentially the same form:

1. Define a size metric mapping kinds and constructors into the natural numbers (basically
textual size)

2. Extend the metric to derivations

3. Show that the judgements only permit derivations which only use smaller sub-derivations as
hypotheses.

4. Observe that an infinite derivation contradicts the well-foundedness of the natural numbers

2.5.1 Termination of sub-kinding.

Consider the relation -< on sub-kinding derivations J defined as follows: J\ -< J2 iff J\ is an
immediate sub-derivation of J2. It suffices to show that the -< relation is well-founded, since if
there are no infinite descending chains in the relation, then clearly there are no infinite derivations
(notice that all rules have a finite number of hypotheses). To show that this is the case, we

exhibit a mapping SZ which maps derivations to natural numbers, and show that this map is order
preserving. For notational simplicity, we write SZ(A f= Ki < K2) for SZ(J) where J is a derivation
the conclusion of which is A (= K\ < K2.

Definition 1
SZ(A \= «! ■< K2) = SZ(KI) + S.S(K2), wAere

S^(K)

1 if K = T
1 if K = ST{C)

SZ{KI) + SZ(K2) if K = E(a :: KI).K2

S2(KI) + SZ(K2) if K = n(a :: KI).K2

It is fairly easy to see that SZ is a function (lemma 1). This establishes that SZ serves as a
metric mapping derivations into the natural numbers. A less obvious result is that SZ preserves
the ordering -< - that is, that the immediate sub-derivations are always smaller according to the
metric SZ (lemma 2). Given this lemma, the main result (theorem 1) follows almost immediately.

Lemma 1
SZ is a function.

Proof. It is easy to see that V7c3!n s.t. SZ(K) = n by induction over the structure of K. The lemma
follows immediately. ■

Lemma 2
SZ is order preserving. That is,

Ji<J2=> SZ(Ji) < SZ{J2)

Proof. The proof proceeds by cases on the last rule used in J2. See appendix A.3.1 for details. ■

Theorem 1
The algorithm for checking subkinding always terminates. That is, the algorithmic rules for sub-
kinding do not permit any infinite sequences of rule applications.

Proof. By the previous lemmas, every derivation has as immediate hypotheses only sub-
derivations that are strictly smaller according to a well-founded ordering. Therefore, there can be
no derivations of infinite depth, since such a derivation would correspond to an infinite descending
chain in the well-founded ordering. ■

2.5.2 Termination of the well-formed kind, kind analysis, and kind synthesis algo-
rithms

The proof of decidability of the well-formed kind, kind analysis and kind synthesis algorithms
proceeds in much the same fashion as above. The only significant difference is that the measure
function for derivations maps into lexicographically ordered pairs of natural numbers. This arises
because of the form of the kind analysis judgement, and is mostly a technicality: it is easy to see
that all uses of the single kind analysis rule could be inlined into the other judgements allowing the
proof to proceed as before.

We start by defining measure functions which map derivations to pairs of natural numbers
ordered lexicographically below. These functions are defined as before in terms of inductively
defined functions szK() and szc(), which act as measures on kinds and constructors, respectively.

10

Definition 2

SZK(K) =

szc(c)

SZ{J)

1
szc(c) + 1
SZK(KI) + SZK(K2)

SZK(KI) + SZK(K2)

1
szc{ci) + szc(c2)
SZc{C\) + szc(c2)
szc(c') + l
szc(c') + SZK(K)

SZC(CI) + szc{c2)
szc{ci) + szc(c2)
szc{c') + l
szc(ci) +szc(c2)

(SZK(K), 0) if the
(szc(c), 1) if the
(szc(c),0) if the

if K = T

if K = ST(C)

if K = £(ct :: KI).K2

if K = n(o' :: Ki).«2

if c = a, /ni, Boxedfloat
\fc = n(a,ß).(c1,c2)
if c= ci x c2,ci ->• c2,ci + c2

if c = c' array
if c = Aa::K.c'
if C = Ci C2

if c=< ci,c2 >
ifc = c'.l,c'.2
if c = let a = c\ in c2 end

conclusion is A |= K

conclusion is A \= c |L K

conclusion is A f= c ff K

The proof then proceeds almost exactly as in the sub-kinding case, except that there is an
additional lemma observing that the selfification judgement used by the kind synthesis algorithm
is also decidable.

Lemma 3
SZ is a function.

Proof. It suffices to show that szc(), and szK() are well-defined. This follows by induction over
the structure of K and c. ■

Lemma 4
The selfification judgement f= c :: K\ = n2 is decidable.

Proof. Follows by induction over the structure of K. ■

Lemma 5
SZ is order preserving. That is,

JX^J2^ 5Z(Ji) < SZ(J2)

where < is the lexicographic ordering on N x N.

Proof. The proof proceeds by cases on the last rule used in J2. See appendix A.3.2 for details. ■

Theorem 2
The kind synthesis, kind analysis, and kind well-formedness judgements are decidable.

Proof. By lemma 5, any infinite sequence of rule applications corresponds to an infinite
descending chain of pairs of natural numbers ordered lexicographically, which contradicts the well-
foundedness of (N x JV, <). ■

11

2.6 Efficiency concerns with the MIL

In the previous sections we define a language sufficiently expressive for our purposes and give
algorithms for checking the well-formedness of terms in this language. This language is very close
to the original MIL calculus that was first used in the TILT implementation. While sufficient from
a theoretical perspective, this turns out to suffer from some practical deficiencies.

An early challenge in the TILT implementation was to keep the size of the compiler intermediate
forms manageably small. In some cases relatively small programs increased in size dramatically
when translated into the MIL, and larger programs became simply unmanageable. Surprisingly,
measurements suggested that a good deal of the program size was due to kinds.

One of the major reasons for this becomes apparent upon closer inspection of the MIL typing
rules. Because singleton kinds are restricted to contain only constructors of kind T, constructors of
higher kind end up being duplicated in their principal kinds. For example, if c is a large constructor
of kind T x T then principal kind of c is Sj{^i c) x ST{^2 C): the kind is more than twice as large
as the constructor it classifies. The duplication of constructors in kinds is quite pernicious: since
structures and functors turn into constructor records and functions, kinds may contain many copies
of entire structures. This becomes especially bad in the case of nested structures, a common ML
programming idiom.

2.6.1 Singletons at higher kinds

S(c::T)
S(c::ST(c'))
S(c::U(a :: KI).K2)

S(c:iE(a :: Ki).«2)

ST(c)
ST(C)

U(a :: Ki).S(ca::K2)
£(ct :: S(n\ C::KI)).S(7T2C::K2)

Figure 6: Definability of singletons at higher kind

An obvious solution to the constructor duplication problem is to permit the use of singletons at
higher kind. This is not at all difficult so long as the singletons are labeled with the kind of their
contents: in fact, as figure 6 shows, this is definable in the original calculus. This allows for kinds
of the form ST(^I C) X ST{^2C) to be replaced with an equivalent kind of the form S(c::T x T),
which contains only one copy of the classified constructor.

In practice however, this solution is not sufficient: kinds still account for too much of the space
used by the intermediate forms. In this system, the decorations on the singletons themselves now
occupy a significant amount of the space saved - the kinds used are generally smaller, but there
are more of them. Moreover, it is hard to systematically avoid the creation of kinds of the form
S(c::S(c::T)): a perfectly legitimate kind, but not desirable from an efficiency standpoint.

As a result of these observations, it became clear that what was needed was a system containing
unlabelled singletons at higher kind: S(c) instead of S(C::K). In such a system, the principal kind
of a constructor c is always S(c). This kind is both small, and fast to synthesize, but does not
provide any useful structural information. An attempt to use this kind (for example, to determine
if a projection from a variable of this kind is well-formed) requires additional work. The system
with unlabelled singletons introduces a significant measure of type reconstruction into the language
in addition to that already introduced by the decision to elide classifiers on let bindings. (In fact,
if we view the binding let a :: K = Ci in c? end as syntactic sugar for AOJ::5(CI::K).C2 [SH99], then

12

it becomes clear that eliding the classifier on let bindings is merely a special usage of unlabelled
singletons: i.e. let a = ci in c2 end corresponds to Aa::5(ci).c2.)

Because of this additional burden of type reconstruction, it is not immediately clear that the
language with unlabelled singletons is decidable: unlike labelled singletons, there is no simple
inductive definition that tells what the corresponding simple singleton kind is. The next section
defines a language with unlabelled singletons, presents an algorithm for typechecking, and proves
its decidability.

3 NIL (Extended MIL)

The relatively simple core calculus described above is sufficient from the standpoint of serving as a
target language for the elaboration phase. However, from the standpoint of efficient implementation,
it is somewhat deficient. This section describes the extension of the MIL language to permit
unlabelled singletons at higher kinds. For clarity, we use the term NIL to describe this extended
calculus.

3.1 Syntax

k ::= S{c)\T\ST{c)\i:{a::k).k\E{a::k).k

c ::= ... | Xar.k.c

t ::= T(c)\(a:: k,x:t)-^t\ Float

| t x t | let a = c in t end

p ::= a \ p.l \ p.2 | pc

e ::= x | let x = e in e end | let a = cine end

| rec / = \(a::k, x : T) : r.e

| e[c]e |< e, e >| e.l | e.2 | n | r | boxfloat(e) | unboxfloat(e)

| inlCiCe | inrc>ce | caseTeof {inl(x) =$ e,inr(x) =$> e}

| rollc(e) | unroll(e) | projt(e)

| arrayc(e,e) | sub[c](e,e) | fsub(e,e)

A ::= »| A[x : r] | A[O:::K]

Figure 7: NIL Syntax

The syntax for the NIL language is given in figure 7: the only change from the MIL is the addition
of the unlabelled singleton, S(c). For the sake of clarity, we write kinds in this extended calculus
as k instead of K, which we reserve for the core calculus.

13

There are two points of importance to the extended system that are already evident in the
syntax. The first is that the addition of unlabelled singletons does not replace the core singleton
at kind T: the original singleton form is still present in syntax. The second point is that typing
contexts are restricted to contain kinds K from the core calculus only: there are no unlabelled
singletons allowed in the context. These two facts are the key to making the algorithm terminate.

3.2 Algorithmic judgments

New judgements
A |= k\n Kind standardization
A f= c\c' Constructor standardization

New versions of old judgements
A |= k Well-formed kinds.
A (= c ij- K Kind analysis
A j= c i\ K Principal kind synthesis
A (= T Well formed type
A |= e JJ. T Type analysis
A (= e ff T Type synthesis

Unchanged
A ok Well-formed context
A. \= Ki < K2 Subkinding.
A h C\ = C2 :: K Constructor equivalence.

Figure 8: Nil declarative judgements

The judgements used to define the NIL typechecking algorithm are listed in figure 8, and are
described in full in appendix B.l. The major change is the addition of two new judgements:
kind standardization and constructor standardization. We call a kind standard if it contains no
occurrences of unlabelled singletons. A constructor is standard if it contains only standard kinds.
Notice that every standard kind is a MIL kind. These new judgements implement the process of
putting a kind or constructor into standard form.

The kind standardization algorithm traverses compositionally over the structure of kinds until it
reaches a singleton type. In the case that the singleton is not standard it is necessary to reconstruct
the principal standard kind by calling the kind synthesis algorithm on the constructor.

A j= eft K
 Singleton Any

A \= S{C)\K

If the singleton is already standard, all that remains to be done is to standardize the constructor.

A (= c\c'
Singleton Type

A \= ST(C)\ST(C')

The labelled singleton is important here: it provides a way of marking singletons which do not
require further type reconstruction efforts.

14

Notice that the kind synthesis algorithm is designed to synthesize standard kinds for non-
standard constructors. This mixing of the two systems is important for a number of reasons, but
here we see how it comes into play during kind standardization: if kind synthesis returned non-
standard kinds we would not have made progress here. This intertwining of the two systems is
essential to the algorithm.

The constructor standardization algorithm is straightforward: it simply traverses the construc-
tor, standardizing any kinds that it finds.

A\=k\n A[a::K] \= c\c'
 Lambda

A (= Xa::k.c\Xa::K.c'

It is also possible to generalize the system slightly by using an intermediate form wherein non-
standard constructors are allowed inside of standard singletons so that constructor standardization
is no longer necessary. This is a relatively straightforward extension, and for the sake of brevity we
do not elaborate on it here.

The kind synthesis algorithm now proceeds much as before, but with additional calls to the kind
standardization algorithm where necessary to preserve the property that all kinds in the context
are standard.

A (= k A |= k\K
A[a::K] f= c ft K' a <£ Dom(A)
 : Lambda

A \= Xav.k.c ft U(a :: K).K'

In the variable rule we can see the importance of this property.

|= a :: K = K'
 Variable

A[a:-.K] \= a ft n'

Because the contents of the context are already standard, it is not necessary to call back to the
kind-standardization algorithm here. Much as with labelled singletons in the kind standardization
algorithm, this gives the algorithm a place to stop.

The fact that the kind synthesis algorithm returns standard kinds is also important internally
to the algorithm in cases where it must inspect kinds. In the projection rule, the fact that the kind
returned is standard means that the only possible form for the kind of the constructor is that of a
pair, and hence no further work need be done to determine if the projection is well formed.

A \= cit~£(a :: KI).K2

 First projection
A |= 7Ti C ft K!

The rest of the judgements change from the MIL only in minor ways: either additional cases to
handle the new construct, or additional calls to kind standardization where needed. Interestingly,
the subkinding and constructor equivalence algorithms carry over intact to the new system: it
naturally falls out that the only calls to these algorithms are made with standardized arguments.

3.3 Soundness and Completeness

It is important for the purposes of the compiler that the extended system be complete with respect
to the core system: that is, that all programs which could be typechecked in the core system can

15

still be typechecked in the extended system. This property holds, as stated in theorem 3. The
proof of this theorem follows almost trivially, since the NIL is a syntactic superset of the MIL and
since the well-formedness judgements of the NIL closely parallel those of the MIL. For clarity in
the statement of the theorems, we write the NIL well-formedness judgements with a superscripted

+
turnstyle, as such: (=.

Theorem 3 (Completeness)
The extended system is complete with respect to the core system.

+
1. if A ok and A |= K, then A (= K.

+
2. if A ok and A |= c ft K, then A (= c ft K.

Proof. First observe that every MIL kind is a syntactically valid standard NIL kind. Then
observe that the kind standardization algorithm is the identity on standard kinds. The proof then
follows easily by induction over the structure of typing derivations. ■

While completeness is the most important property, it is desirable that the system be sound with
respect to the core system as well: that is, that it does not allow us to typecheck more programs
than before. Theorem 4 states this property. The proof of this theorem is less obvious, but not
significantly more difficult.

Theorem 4 (Soundness)
The extended system is sound with respect to the core system.

+
1. if A ok and A |= k then there exists a K such that A f= k\n and A f= K

+
2. if A ok and A (= c ft K then there exists a c' such that A f= c\c' and A (= d ft K

Proof. By induction over the structure of typing derivations ■
These two basic theorems show that from a theoretical standpoint the NIL is a sensible extension

of the MIL. The next section will show that in addition to being sound and complete with respect
to the core system, the extended system is also decidable. This is the last and in some ways the
most important property that the extended system must hold.

3.4 Termination Proofs

The proof of decidability of the extended system proceeds much as with the core system, defining
measure functions which map derivations to pairs of natural numbers ordered lexicographically and
using these to argue that the system is well-founded.

Definition 3

szk{k) = <

1 \ik = T
szc(c) + 1 if k = ST(C)

szc{c) + l if i= 5(c)
s%(£i) + szk{k2) if k. = S(Q :: kx).k2

szkiki) + szkikz) if£= n(a ::k1).k2

16

r l

szc(c) = 1

SZ(J) = {

szc(ci) + szc(c2)
szc(ci) + szc(c2)
szc{c') + 1
szc(d) + szk_(k)
szc(ci) + szc(c2)
szc(ci) + szc(c2)
szc(c') + 1
szc{ci) + szc(c2)

(szk(k),0) if the
(szc(c),0) if the
{szk(k),0) if the
(s2c(c), 1) if the
(szc{c),0) if the

if c = a, Int, Boxedfloat
ifc = /i(a,/?).(ci,c2)
if c = C\ x c2, ex -» c2, cj + c2

if c = d array
if c = Aa::fc.c'
if C = Ci C2
if c=< ci,c2 >
ifc = c'.l,c'.2
if c = let a — ci in c2 end

conclusion is A |= k\n
conclusion is A \= c\d
conclusion is A |= k
conclusion is A (= c JJ. K

conclusion is A (= c ff K

As before, we argue that the measure is a well-defined function. Note that the selfification result
of lemma 4 still holds, since selfification is only performed on standard kinds.

Lemma 6
SZ is a function.

Proof. It suffices to show that szc(), and SZJJ) are well-defined. This follows by induction over
the structure of k and c. ■

Lemma 7
SZ is order preserving. That is,

JX<J2^ SZ{JX) < SZ(J2)

where < is the lexicographic ordering on N X N.

Proof. The proof proceeds by cases on the last rule used in J2. See appendix B.2.1 for details. ■
The main result then follows easily as before.

Theorem 5
The kind standardization, constructor standardization, kind synthesis, kind analysis, and kind
well-formedness judgements are decidable.

Proof. By lemma 7, any infinite sequence of rule applications corresponds to an infinite
descending chain of pairs of natural numbers ordered lexicographically, which contradicts the well-
foundedness of (N x N,<). m

4 Conclusion

This paper presents a language very close to that actually used in the internals of the TILT compiler:
a language whose design was driven not by the usual concerns of programer usability, but by the
new concern of compiler usability. This difference in purpose leads to very different concerns
than those normally encountered by language designers. We have discussed here some of the
more important design decisions resulting from this in the original core calculus, and we have also
described the extension of the calculus to allow unlabelled singletons for the purpose of providing

17

compact representations of internal forms. This extension has been shown sound and complete,
and decidable.

The work described here was a key part of making the TILT compiler run efficiently, and well.
It is of particular interest because it presents a theoretical approach to solving a practical problem.
This is indicative of the overall design philosophy of the TILT project: that a systematic and
theoretically sound approach to practical problems provides significant engineering benefits. The
use of a new language construct (unlabelled singletons) to achieve an engineering goal (better space
efficiency) is an excellent example of how this can work.

References

[HL94] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order mod-
ules with sharing. In Twenty-First ACM Symposium on Principles of Programming
Languages, pages 123-137, Portland, OR, January 1994.

[HM95] Robert Harper and Greg Morrisett. Compiling polymorphism using intensional type
analysis. In Twenty-Second ACM Symposium on Principles of Programming Lan-
guages, pages 130-141, San Francisco, CA, January 1995.

[HMM90] Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order modules and the
phase distinction. In Seventeenth ACM Symposium on Principles of Programming
Languages, San Francisco, CA, January 1990.

[HS96] Robert Harper and Chris Stone. A type-theoretic account of Standard ML 1996 (ver-
sion 2). Technical Report CMU-CS-96-136R, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, September 1996. (Supersedes [SH96]. Also pub-
lished as Fox Memorandum CMU-CS-FOX-96-02R.).

[HS97] Robert Harper and Chris Stone. An interpretation of Standard ML in type theory.
Technical Report CMU-CS-97-147, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, June 1997. (Supersedes [HS96] and [SH96]. Also published
as Fox Memorandum CMU-CS-FOX-97-01.).

[MWCG97] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to Typed
Assembly Language. Technical Report TR97-1651, Department of Computer Science,
Cornell University, 1997.

[SH96] Chris Stone and Robert Harper. A type-theoretic account of Standard ML 1996 (ver-
sion 1). Technical Report CMU-CS-96-136, School of Computer Science, Carnegie Mel-
lon University, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA 15213-3891, May 1996. (Also published as Fox Memorandum CMU-CS-FOX-96-
02).

[SH99] Christopher A. Stone and Robert Harper. Deciding Type Equivalence in a Language
with Singleton Kinds. Technical Report CMU-CS-99-155, Department of Computer
Science, Carnegie Mellon University, 1999.

[TMC+96] David Tarditi, Greg Morrisett, Perry Cheng, Chris Stone, Robert Harper, and Peter
Lee. TIL: A type-directed optimizing compiler for ML. In ACM SIGPLAN Conference

18

on Programming Language Design and Implementation, pages 181-192, Philadelphia,
PA, May 1996.

A MIL

A.l Declarative judgements

Well Formed Context

 Empty
i ok

A ok Ah« a £ Dom(A)
Kind

A[ct::K]ok

A ok

A ok Ah T x £ Dom(A)

A[x : r] ok
Type

Well Formed Kind

A ok
 Type
AhT

AhK

Ahc::T

A h ST(c)
Singleton

AHKI A[a::Kj] h «2

A h n(a :: KI).K2

A h K\ A[a::«i] h «2

A h E(a :: Ki).«2

Pi

Sigma

Sub-Kinding

A ok

AhT^r
Type

A h K\ < K2

A h 5T(c)

A h 5r(c) ^ T
SingletonL

19

Ahc = d::T
Singletons

A H ST(c) ± ST{d)

A I- K[< K\ A[a::Ki] h/c2^ K2

A h II(a :: K^).^ < ü(a :: Ki).«'2

A h KI ^ K': A[Q'::KI] I- K2 :< K2

A h S(a :: KI).K2 d
s(a':: «i)-«2

Well formed constructor

A ok
 Variable

Pi

Sigma

A h- c :: K

A h ö :: A(a)

A ok

A I- BoxFloat :: T
BoxFloat

A ok

A h Int :: T
Int

A[a::T][ß::T] h Cl :: T A[a::T][/?::T] h c2 :: T

Ah/f(Q,/3).(c1,c2)::T

A h ci :: T A h c2 :: T

Mu

A h d X c2 :: T

A h ci :: T A h c2 :: T

A h ci -> c2 :: T

A h ci :: T A h c2 :: T

A h cj + c2 :: T

A h cj :: T A h c2 :: T

Ahci+t'c2::T

Pair

Arrow

Sum

KnownSum

Ar-c::T

A h c arrat/ :: T
Array

20

A H K A[a::K] h c :: K'
 Lambda
A h A (a :: K).C :: n(a :: K).K'

A h CI :: U(a :: KI).K2 A h c2 :: K\

A h cj c2 :: {c2/a}K2

A h cj :: KJ A h c2 :: K2

App

A h (ci,C2) :: «i x K2

A h c :: E(a :: KJ).K2

Record

A h c.l :: KI

A h c :: E(a :: KI).K2

Projl

Proj2
A h c.2 :: {c.l/a}n2

A h ci :: «i A[a::«i] h c2 :: K2

A h let a = CI in c2 end :: {ci/a}K2

A h c :: T
 Selfify

Let

Ahc::ST(c)

Ahc::n A h K X K'
Subkind

A h c :: K'

A h c :: E(a :: KI).K2 A h c.l :: K[

Ah c::E(a :: K[).K2

A \-c :: Y,(a :: KI).K2 A h c.2 :: K'2

A h c :: «i X K2

A h c :: II(a :: «I).K2 A[a::«i] h ca :: K2

A h c :: n(a :: K^)./^

21

Sigma Extl

Sigma Ext2

Pi Ext

Well-formed Type

A\-c::T

A h T{c)
Constructor

Ah

A h K A[Q::K] h TX A[Q::K] h r2

A h (a :: K,TI) -» r2

Arrow

A ok

A h F/oa/
Float

A h Ti A h r2

A h T! x r2

Float

A r- c :: Kj A[a::Kj] I- r

A h let a = c in r end

Well-typed term

A ok

Let

Aha;: A(.r)
Variable

LetE
A h ex : rx A[x : ri] h e2 : r2

A h let x = e\ in e2 end : r2

A h c :: K A[Q::K] \- e : T

A H let a = c in e end : let a = c in r end

A h e : r

LetC

A h K A[a::/t] h rt A[Q::K] h r2

A[/ : (a :: K,TI) -> r2][a::«;][x : n] h e : r2

A h rec/= A(Q::K,X : ri) : r2.e : (a :: K, TJ) —>• r2

Rec

A h ei : (a :: K,TI) -> T2 A h C :: K

A h e2 : {c/a}rj

Ar-ei[c]e2 : {c/a}T2

App

A I- ei : ri A h e2 : r2

Ah <ei,e2) : ri x r2

Pair

22

A h e : T\ X r2
 Projl
Ahe.l : TI

A h e : T\ X r2
 Proj2
Ahe.2 : r2

A ok
 Float
A h r : F/oai

A ok
 Int
Ahn: r(J^)

A h e : F/oat

Ahboxfloat(e) : T(BoxFloat)

A h e : BoxFloat

Box

A h unboxfloat(e) : Float
Unbox

A h e : T{Cl + c2)
A [a: : T(Cl +

1 c2)] h ei : r A[z : T(Cl +
2 c2)] h e2 : r

A h caser eof {inl(:r) => ei,inr(a:) => e2} : r
Sumswitch

A h ci :: T A h c2 :: T
A he : T(Cl)

A hinlCliC2e : T(ci + c2)

A h ci :: T A h c2 :: T
A h e : F(c2)

A h inrCl,C2e : T(ci + c2)

inl

inr

Ahc::T A h c = n{a,ß).{cuc2).i:: T
A he : T({c.l,c.2/a,/?}c,-)

A h rollc(e) : F(c)

Ahe:r A h r = T{fi(a, ß).{cu c2).i)

Ahunroll(e) : T{{n{a,ß).(c1,c2).l,fi{a,ß).{chc2).2/a,ß}ci)

Ahe:r A h r = T{cx +' c2)

roll

unroll

proj
A h proj,.(c) : T{a)

23

A hei : Int A\-c::T
Ahe2: T{c)

Ah array, (ei,
arraj

e2) : T(c array)

Ah e\ : T(c array) A h e2 : T(Int)
sub

Ah sub[e!](e2) : T(c)

Ah t\ : T(BoxFloat array) Ahe2 : T(Int)
fsub

A hfsub(ei,e2) : Float

A.2 Algorithmic judgements

Well Formed Kind I A (= K

A \=T

A\=c$T
Singleton

A |= ST(c)

A (= «! A [a ::KX] |= K2

A |= II(a :: «i)-«2

A h^ Ki A [a ::«i] N *2

A (= E(a :: KI).K2

Pi

Sigma

Sub-Kinding A (= K\ ■< K2

Assume that A, K\ and K2 are well-formed. Check that Ki is a subkind of K2.

 Type
A \=T <T

Singleton
A |= ST(c) < T

A \=c=d::T
Singletons

A |= ST{c) < ST(d)

A \= K[< Ki A [a :: K[] (= K2 < K'2 a $. Dom(A)

A |= Il(a :: KI).K2 ^ ü(a :: «i).^

A |= Ki ^ K'X A[Q- :: Ki] |= K2 ■< K'2 a $. Dom(A)

A (= E(a :: /CI).K2 ^ S(a :: KI).K2

24

Selfiflcation j= c :: K = K'

Assume c and K are well-formed with respect to some context. Return the most precise kind of c.
Intuitively, this is the definition of a singleton at the higher kind.

Type
\= c :: T = ST(c)

\=c::ST(d) = ST(c)

\= ca :: K2 = K'2

Singleton

Pi
|= c :: n(a :: KI).K2 = U(a :: KI).K'2

\= c.l :: Ki = K[\= c.2 :: {C.1/G;}K2 = K'2

|= c :: S(a :: KI).K2 — S(a :: K'J.KJ

Sigma

Kind Analysis A (= c Jj. K

Assume A and K are well formed. Check that c is well formed and can be given kind K.

A\=ci\Kf A\=K' <K

A \= ci}- K

Analysis

Kind Synthesis A (= cff K

Assumes that A is well-formed. Check that c is well-kinded, and construct K s.t. A (= K and c has
kind K.

j= a :: K = K'

A [a :: K] (= aft K'

Variable

A |= BoxFloat ft Sj(BoxFloat)

 Int

BoxFloat

A \= Int ft 5T(/nO

A[a::Tp::T] (= T ^ A[a::r][/3::T] ^ T ij, a, ß $ Dom(A)

A [= ^(a,/3).(ci,c2) fr ST{n{<*,ß).{cu c2).l) x ST(/i(a,/J).(Cl,c2).2)
Mu

A^ciJ^T A^c2JJT

A (=ci x c2fr5T(ci xc2)
pair

25

Su m

KnownSum

 Arrow
A l=ci -+c2ft5T(ci ->c2)

A |= ci ^ T A^=c2^T

A |= cj + c2 ft ST(ci + c2)

A\=Cl^T A\=c2^T

A(=ci+«'c2ftSr(ci+,'c2)

A^cJjT
 Array
A (= c array ft Sj(c array)

A (= K A[cv :: K] [= c fr K' a £ Dom (A)

A (= Aa::K.cft n(a :: K).K'

A (= ci f|- Il(a :: /q).^ A j= c2 Jj. /q

Lambda

A [= ci c2 ft {c2/a}K2

A |= Ci ft Kj A f= c2 ft K2

App

A (= (ci,c2) ft«i x K2

A |= eft E(a :: KI).K2

Record

A hclftKi

A (= eft E(a :: «I).K2

Projl

Proj2
A ^c.2ft{c.l/a}K2

A f= ci ft Ki A [a :: KJ] (= c2 ft K2 a £ Dom(A)

A f= let ct = cj in c2 end ft {ci/a}«;2

Let

Well-formed Type A (= r

Assume A is well-formed. Check that r is well-formed.

A\=cl±T
 Constructor

A |= T(c)

26

A\= K a £ Dom(A)
A[a::«] |= n A[a::/s] \= r2 Arrowiype
A |= (aiiK.Ti) -4r2

 Float
A |= Float

A\=n A\=T2

PairType
A (= 7"i X T2

A(=cf|-Ki A[a::Ki] (= r a £ Dom (A)

A |= let a = c in r end
Let

Type Analysis A (= e JJ. r

Assume A and r are well-formed. Check that e is well-typed, and has type r.

A |= e ft r' A|= r' = r
 Analysis

A \=e\j-r

Type Synthesis A |= e ft r

Assume A is well-formed. Check that e is well-formed and construct its type r, where A |= r

 Variable
A [a; : r] |= x ft r

A |= ei ft ri A[x : rx] |= e2 ft r2 s £ Dom(A)

A (= let £ = ei in e2 end ft r2

A|=cft/s A[a::K] f= e ft r a £ Dom(A)

lete

A (= let a = c in e end ft let a = c in r end
letc

A(=K A[a::/e] (= n A[a::«;] |= r2

A[/ : (a :: K, rx) ->■ r2][a::«;][a; : n] (= e JJ. r2 /, x, a £ Dom(A))
rec

A |= rec / = A(CK::K, x :T{) : r2.e ft (a :: K, ri) -> r2

A |= ei ft (a :: K, ri) -4- r2 A |= ci+i JJ. {c/a }K,-+I A |= e2 JJ. {cn/ä"}ri

A [= ei [c]e2 ft let a = c in T2 end

A^eiftr A\=T^ Tfa -> c2) A |= e2 J> T(ci)

A^eiDe2ftr(c2)

27

app

MonoApp

A |= ei ft 7-1 A |= e2 ft r2
 pair
A (= (ei,e2) ftn x r2

A(=eftr A (= A H T7) x r2

A \= e.l ft Ti

A|=eftr A (= T 4 TJ x T2

type_projl

A |= e.2 ft r2

 Float

type_proj2

A (= r ft F/oa£

 int
A |= n ft T(7ni)

A f= e 4J. F/oa*

A |= boxfloat(e) ft T{BoxFloat)

A |= e J| T(BoxFloat)

box

A)= unboxfloat(e) ft F/octf
unbox

A h c ft re A^re4 T(a + c2) A |= r
A[x : d +1 c2] (= ex (l r A[.t : ci +2 c2] \= e2 ty T

__ sumswitch
A |= caseT eof {inl(a;) => ei,inr(a;) =>■ e2} ft n

A |= ci J| T A ^ c2 J| T
A|=e^T(Cl)

A f= inlCliC2e ft T(ci + c2)

A^c^T Ahc2llT
AN^ F(c2)

A |= inrCl)C2eftT(ci + c2)

inl

inr

Af=c^T A|=d->//(a,/?).(ci,c2).tr
A f=e^T({c.l,c.2/a,/?}<:,■) ^

A[=rollc(e)ftr(c)

A^eftr A^r^T^l«,/?).^,^).?)

A |= unroll(e) ft F({/i(a, ß).{cu c2).l, /x(a, /?).(Cl, c2).2/a, /?}c,-)

28

unroll

A ^ e ft r Af=TH-> r(cx +«" c2)

A ^proj^e) ft T(ci)

A^e1\^T{Int) A(=cJ)T
A [= e2 J| T(c)

proj

array
A |= arrayc(ei, e2) ft T(c array)

A |= ei ft]r A |= r h-)- T(c' array) A |= e2 J) Int

A |= ex -U- T{BoxFloat array) A |= e2 ij. T(Int)

A |= fsub(ei,e2) ft Float

sub

fsub

Natural Kind Extraction

Assumes that A and p are well-formed. Returns the unselfified kind of p.

 Variable

A[Q::K] |= a~» n

A \= p~» S(a :: KI).K2

 Projl

A (= p~> K

A |= p.l "N-* Kj

A |= p~» £(a :: KI).K2

A f=p.2~> {p.l/a}K2

A \= p^ II (a :: «I).K2

A |= pc~> {C/O}K2

Proj2

App

Weak Head Beta Short Form

A (= c\ M- Aa :: K.CI A |= {c2/of}c! *-> c

A f= ci c2 <->■ c

A ^=c->(ci,c2) A^=ci^ci
 Projl

A |= c.l <-»• c'x

A |= c <-»■ (c1; c2) A (= c2 <-)• c'2

A [= c ^ c'

App

A |= c.2 ^ c'2

Proj2

29

A |= {c1/a}c2 <->■ c

A (= let a = ci in c2 end <-> c

 Otherwise

Let

Constructor Weak Head Normal Form

Assumes that A and c are well-formed. Returns the head normal form of c.

A\=c^p A\=p~ ST{c') A f= c' .-> c"

A |= c H> c'

At=c^c"

A(=c^p A|=PMK K^ 5r(c')

A [= C4 p

Pathequation

Pathnoequation

A |= c «->■ c' c' not a path
NonPath

A (= c i->- c'

Type Weak Head Normal Form

A |= {c/a}r i-> r'

A |= let Q = c in r end i-» r'

A |= c i-> ci x c2

A h= T(c) ^ T(Cl) x T(c2)

A (= c i-^ c'
 Inclusion

A |= r (->■ r'

Let

Con pair

A |= T(c) .-+ r(c')

 Otherwise
A [= r i-> T

A.3 Termination Proofs

A.3.1 Proof of Lemma 2

To show: SZ is order preserving. That is, J± ^ J2=$> SZ{J{) < SZ(J2)
Proof. We proceed by cases on the conclusion of J2.

1. A (= T < T. Vacuously true: J2 is minimal, and hence has nothing smaller than it.

2. A |= ST(C) ■< T. Vacuously true: J2 is again minimal.

30

3. A |= ST(C) ■< Sx{d). The rule for this judgement has no sub-kinding derivations, and hence
has nothing smaller than it. The only subgoal is an equivalence derivation, which has been
shown to be decidable separately [SH99].

4. A |= n(ev :: KX).K2 di n(a :: 'K\).K2- Suppose Jx -< J2. From the subkinding rule for the II
kind, we see that there are two possibilities for the conclusion of J\:

(a) A |= K[■< Ki

SZ(Ji) = szfa'i) + SZ(KI)

< S2(Ki) + SZ(KI) + SZ(K'2) + SZ(K2)

= SZ(J2)

(b) A[a::«i] \= K2 < K'2

SZ(JI) = SZ(K2) + SZ(K2)

< SZ(K[) + SZ(KI) + SZ(K2) + SZ(K2)

= SZ(J2)

5. A |= S(a :: K\).K2 ■< E(a :: K'^.K^. Suppose J\ -< J2. From the subkinding rule for the S
kind, we see that there are two possibilities for the conclusion of J\:

(a) A |= K\ < K[.

SZ{Ji) = SZ(K[) + SZ(KI)

< SZ(K'1) + SZ(KI) + SZ(K'2) + SZ(K2)

= 5Z(J2)

(b) A[a::Ki] |= K2 ^ K2.

SZ(JI) = SZ(K2) + SZ(K2)

< szln^) + SZ(KI) + SZ(K'2) + sz(n2)

= SZ{J2)

A.3.2 Proof of Lemma 5

To show: SZ is order preserving. That is, Ji -< J2 => SZ(J\) < SZ{J2) where < is the lexicographic
ordering on JV x JV.

Proof. The proof proceeds by cases over the conclusion of J2, demonstrating that each
immediate subderivation is strictly smaller according to the given metric. We ignore subderivations
that correspond to judgements which are independently known to be decidable, such as subkinding
and constructor equivalence. Technically, this may be viewed as using the constant measure that
always returns zero for these judgements.

1. Well Formed Kind A (= K We proceed by subcases on the form of K.

(a) T No premises.

31

(b) ST(c)

SZ(A^c^T) = (szc(c),l)

< (szc(c) +1,0)

= SZ(A^ST(c))

(c) I1(KI :: K2).

i.

SZ(A^Kl) = (szK(Kl),0)

< (SZK(K!)+ SZK(K2),0)

= 5Z(A^n(Q::K1).K2)

ii.

5Z(A[Q::K1] (= K2) = (SZK(K2),0)

< {SZK(KI) + SZK(K2),0)

= 5Z(A(=n(a::Ki).K2)
(d) E(KI::K2).

i.
SZ(A |= Ki) = (S2K(K!),0)

< (SZK(KX) + SZK(K2),0)

= SZ(A |=S(Q■::«!).K2)

ii.

5Z(A[O::K!] |= K2) = (SZK(K2),0)

< {SZK(KI) + SZK(K2),0)

= SZ{A\=E(a::Kl).K2)

2. Kind Analysis A (= c JJ. K.

5Z(A(=C^K') = (s*c(c),0)

< (*«c(c),l)

= SZ(A|=C^K)

3. Kind Synthesis A f= c ft K

Variable By lemma 4

BoxFloat No premises

Int No premises

Mu

(a)

SZ(A[a::T,ß::T]^Cl^T) = (wc(Cl),l)

< (s^c(ci) + s2c(c2),0)

= (szc(/*(a,/?).(ci,c2)),0)

= 5Z(A|=/i(o,/3).(Cl,c2)ft«)

32

where K = ST(ß(a,ß)\cx,c2).l) x ST{^{a,ß).(ci,c2).2).

(b) Similar

Pair

(a)

SZ(A\=caT) = (szc(Cl),l)
< (S2C(C!)+S2:C(C2),0)

= (szc(c1xc2),0)

= SZ(A^Clxc2frST(ciXc2))
(b) Similarly for the second premise.

Arrow As with the Pair case.

Sum As with the Pair case.

Array

SZ(A\=c$T) = (szc(c),l)

< {szc(c) +1,0)

= (szc(c array), 0)

= SZ(A |= c array -ft ST(C array))

Lambda

(a)
SZ(A\=K) = (szK(K),0)

< (SZK(K) + SZC(C),0)

= (szc(\a::n.c),0)

= SZ{A \= Xar.K.c i\ U{a :: K).K')

(b)

App

(a)

(b)

SZ(A[a :: K] (= c ft «') = {szc{c),0)

< (SZK(K) + SZC(C),0)

= (szc(\a::K.c), 0)

= 5Z(A |= Aa::K.cfrn(a::K).K')

5Z(A ^ Cl fr n(a :: KX).K2) = (wrc(Cl),0)

< {szc(ci) + szc(c2),0)

= {szc(c1c2),0)

= SZ(A h ci c2 fr {C2/<*}K2)

SZ(Af= C2^Ki) = (szc(c2),l)

< (s2c(ci) + szc(c2),0)

= (s«c(cic2),0)

= SZ(A (= ci c2 fr {c2/a}«2)

33

Record

(b)

SZ{A^Cli\Kl) = (szc(Cl),0)

< (S2C(C1) + S2C(C2),0)

= {,szc(< ci,c2 >),0)

= SZ{A (=< ci,c2 >ft«i x K2)

SZ(A^c2ftK2) = (szc(c2),0)

< (s^c(ci) + szc(c2),0)

= (s2c(< ci,c2 >),0)

= SZ(A |=< d,c2 >fr Ki x K2)

Projl

5Z(At=cftE(a::K1).K2) = (s2c(c),0)

< (s*c(c) + l,0)

= (S2c(c.l),0)

= SZ^^Cl^)

Proj2 As with Projl

Let

(a)

5Z(A(=C1^K1) = (^c(ci),0)

< {szc(ci) + szc{c2),0)

= (szc(let a = Ci inc2end), 0)

= 5Z(A |= let Q = ci in c2 end ft {ci/a}n2)

(b)

5Z(A[a :: Kl) \= c2 ft n2) = (szc{c2),0)

< {szc(ci) + szc(c2),0)

= (szc(let a — c\ inc2end),0)

= 5Z(A (= let a = cj inc2end f)-{ci/a}«;2)

B NIL (Extended MIL)

B.l Algorithmic judgments

Kind Standardization

 Type
A \=T\T

A \=k\K

34

A |= c\c'

A |= ST(C)\ST(C')

Singleton Type

A |= cffK

A |= S(c)\n
Singleton Any

A |= ki\K\ A[a::/«i] (= fc2\
K2

A |= II (a :: fc1).fc2\II(a :: KI).K2

A |= ^.i\«i A[a::«i] |= k2\K2

A (= E(a :: fc1).^2\S(a :: «i)-«2

Pi

Sigma

Constructor standardization A (= c\c'

All cases proceed compositionally over the structure of the constructors except for the following
cases:

A |= k\n A[CC::K] |= C\C'

A j= \a::k.c\\a::K.c'
Lambda

A |= ci\ci A |= Cl ff K

A[a:-.K] |= c2\c'2

A (= let a — c\ in c2 end\let a = c'x in c2 end
Let

Type standardization

A |= cV
Constructor

A |= T(c)\T(c')

A \=k\n
A[a::n][x : n] \= t2\r2

A[U::K] |= ti\ri

A f= (a :: k, x : t\) -> i2\(a :: K, ri) ->■ r2

 Float

Arrow

A |= Float\Float

A \=t\r

A\=h\n A^^2\r2

A (= ti x t2\n x r2
Pair

35

Well Formed Kind

The Type and Singleton Type rules are as before.

A(=c^T
Singleton Any

A \=k

A h S(c)

A[a::«i] |= k2

A\=Il(<*::k1).k3

Pi

A^^j A[=fci\Ki
A[O::KI] |= k2
 Sigma

Sub-Kinding A (= KX ^ K2

We do not need to redefine subkinding for the extended NIL - all queries will be restricted to core
syntax.

Kind Analysis A |= c J) K

Note that we restrict this judgement to core kinds. Assume A and K are well formed. Check that
c is well formed and can be given kind k.

A\=cf[K' A|=K'^AC
 Analysis

A ^=clj.K

Kind Synthesis A |= c ff k

Assumes that A is well-formed. Check that c is well-kinded, and construct K s.t. A |= K and c has
kind K.

(= a :: K = K'
 Variable

A [a :: K]\= aft K'

 BoxFloat
A |= BoxFloat ff ST{BoxFloat)

 Int
A (= Int it ST{Int)

A[a::T][ß::T] \= cx Jj T A[a::T][ß::T] \=c2\±T
A[a::T][ß::T] f= Cl\ci A[a::T][ß::T] (= c2\c'2 a, b <£ Dom(A)

A \=fi(a,ß).(Cl,c2) itST^(a,ß).(c[,c'2).l) x ST(n(a,ß).(c[,c2).2)

36

ß

A(=C]

Vi
A |= c2 ty T
A |= c2V2

A (= c L X C2 fr 5TKXC2)

A (=c
A ^c A4

A ^ c2 U T
A f= c2\c'2

A f= c l ->C; 2frST«-+c2)

A |= c
A^c

A\=c2^T
A |= c2\c'2

A^c 1 + C2 ftSr(ci + c2)

A(=c ^r A \= c\c'

Pair

Arrow

Sum

Array
A (= c array ft ST(C' array)

A\=k A \= k\n
A [a :: K] |= c fr K' a ^ Dom(A)

A |= Aa::£.cfr II(a :: K).K'

Lambda

A |= ci fill (a :: KI).K2 A |= C2 Jj-KI

A (= c2\c'2

A (= ci c2 ff {c2/a}«2

A |= a fr Kj A |= c2 fr K2

A (=< Ci,C2 >fr Kl X K2

A |= cfr S(a :: «I).K2

 Projl

App

Record

A f= c.ifr KI

A |= c1>E(a :: K!).K2 A \= c\c'

A \= c.2 fr {c'.l/a}K2

Proj2

A (= C! fr «iA[a :: KX] f= c2 fr K2

A |= ci\ci a £ Dom(A)

A \= let a = ci in c2 end fr {c'1/a}K2

Well-formed Type

Assume A is well-formed. Check that r is well-formed.

Let

A\=T

Constructor
A |= T(c)

37

A \= k A (= k\n
A[a::n] f= T\ A[Q::K] f= T-[\T[

A[OI::K][X : T{] \= T2 a g Dom(A)

A \= (a :: k, x : Ti) —> T2

 Float

ArrowType

A |= Float

A |= n A\=T2

A\=TiXT2

PairType

Type Analysis A f= e JJ. r

Note that we restrict this to core types. Assume A and t are well-formed. Check that e is well-typed,
and has type r.

A |= e ft r' A\=T' = T
 Analysis
A\=elj.r

Type Synthesis A |= e ft r

Assume A is well-formed. Check that e is well-formed and construct its type r, such that A (= r

 variable
A [a; : r] f= x ft r

A |= ei ft Ti A [a; : rx] (= e2 ft r2 a; £ Dom(A)
 lete

A |= let x = e\ in e2 end ft T2

A |= c ft K A (= c\c'
A[a::n] |= e ft r a £ Dom(A)

A (= let a = c in e end ft {c'/a}r
letc

A |= k A\=k\n
A[a::n} \= n A[U::K] (= rA^'
A[a:-.K] (= r2 A[a::/e] (= T2\T'2

A[a::n}[x:T[}[f:(a::K,T[)-^T^]\=ei\^
f,x,a £ Dom(A)

A (= rec/ = A(a::fc,a: : ri) : r2.e ft (a :: K,T[) —>• r2

A |= ei ft (a :: K, ri) -> r2 A (= c JJ- K

A (= c\c' A |= e2 J| {c'/a}ri

rec

A \=ei[c]e2i\{c'/a}T2

38

app

A^eiftT(ce) A\=ce^cx->c2 A^e2J|r(Cl)
 Monomorphic app
A\=ex\\e2i\T(c2)

A |= ei ft TX A |= e2 ft r2

A h< ei,e2 >ftri xr2

A |= e fr TX x r2
 type.projl

pair

A |= e.l i\ n

A |= e ff T(c) A[=CH>CIXC2

A|=e.lftT(ci)

A f= e fr n X r2
 type_proj2
A (= e.2 ft r2

A |= e fr T(c) A|=ci->ciXC2

A h= e.2 ff T{c2)

 float
A \= r fr F/oai

 int

con_projl

con_proj2

A |= n if T{Int)

A\=e\). Float

A |= boxfloat(e) fr T(BoxFloat)

A |= e JJ. T(BoxFloat)

box

A |= unboxfloat(e) fr F/oai
unbox

A \= e ft T(c) A |= c •-)■ ex + c2

A[z : T(ci +1 c2)] (= ci itn A[x : r(Cl +
1 c2)] |= e2 ff r2

A\=Tx=T2

A (= caseea;of {inl(ei) =» e2,inr(ei) =»fr}rj

A^c^T A |= c2 ^ T
A |= cx\c[A \= c2\c'2

Ah^JVi) inl

Af=inlCl)C2cftr(ci + c'2)

39

sumswitch

A |= Cl\c; A |= c2\c'2

A\=el\T(c>2)

At=inrCl,C2eftT(ci + c/
2)

mr

A\=ctyT A\= c\c'
A \= ei 1) T{Int) A \= e2 ty T(c')

array
A (= arrayc(ei, e2) ft T(c' array)

A f= ei ff T(c) A(=CH>C' array A \= e2 JJ- /n*

AMub[ei](e2,ft)T(C')

A |= ei 4J- T{BoxFloat array) A (= e2 4.1 r(Jnf)

sub

fsub
A f=fsub(ei,e2) ft F/oai

B.2 Termination Proofs

B.2.1 Proof of Lemma 7

To show: SZ is order preserving. That is, J\ -< J2 => SZ{J\) < SZ(J2) where < is the lexicographic
ordering on N x N.

Proof. The proof proceeds by cases over the conclusion of J2, demonstrating that each
immediate subderivation is strictly smaller according to the given metric. We ignore subderivations
that correspond to judgements which are independently known to be decidable, such as subkinding
and constructor equivalence. Technically, this may be viewed as using the constant measure that
always returns zero for these judgements.

• Kind standardization A (= k\n

Type No premises

Singleton.Type

SZ(A\=c\c') = (szc(c),0)

< {szc{c) +1,0)

= SZ(A f= ST(C)\ST(C'))

Singleton_Any

SZ(A^=C1\K) = (S2c(c),0)

< (szc(c) +1,0)

= SZ(A\=S{C)\K)

Pi

40

5Z(A|=Ai\«i) = (s^(fci),0)

< (s^„(n(a::fci).fc2),0)

= SZ{A \= U(a :: fci).Jfe2\II(a :: Ki).«2)

5Z(A[a::KX] |= k2\n2) = (szK{k2),0)

< (szK{Ii{a::kl).k2),0)

= 5Z(A|=n(a::Jfc1).fc2\n(a::Ki).«2)

Sigma As with the Pi case.

• Constructor standardization (All cases except those below are just decomposition of the
constructor)

Lambda

SZ(A^k\n) = (szK(k),0)

< (szc(\a::k.c),0)

= SZ{A (= \a::k.c\\a::K.c')

SZ{A[a::n} \= c\c') = {szc{c),0)

< (szc(\a::k.c),0)

= SZ(A \= \a::k.c\\a::K.c')

Let The size of the original derivation is

SZ{A f= let a = c\ in c2 end\let a = c[in c2 end) = (szc(ci) + szc(c2),0)

2.

3.

SZ(A\=cM) = (wc(ci).O)

< {szc(ci) + szc(c2),0)

SZ{A\=CI1\K) = (szc(Cl),0)

< {szc(ci) + szc(c2),0)

SZ(A[a::K] \= c2\c'2) = (wrc(c2),0)

< (szc(c2) + szc(ci),0)

41

• Well Formed Kind A |= k

Type, Singleton_Type As before

Singleton_Any

SZ(A\=ci\K) = (s*c(c),0)

< (S2C(C) + 1,0)

= SZ(A^S(c))

Pi

1.

SZ(A^h) = (sz^O)

< (S2K(*1) + S2„(fc2),0)

= SZ(A(=n(a::Jbi).fc2)
2.

5Z(A[a::Ki] (= A2) = (s««(A2),0)

< (S^AC(^I) +^K(^2),0)

= 5Z(A(=n(a::Ä:1).Ä:2)

Sigma As with the Pi case.

• Kind Analysis remains unchanged.

• Kind Synthesis A (= c ff K

Variable By lemma 4. Note that kinds in the context are restricted to the core syntactic
forms.

BoxFloat No premises

Int No premises

li Let K = ST(li{a,ß).{c'vc'2).l) x ST{ti{a,ß).{dvd2).2)

1.

SZ(A[a::T][ß::T] \= cx J) T) = (wc(Cl), 1)

< (S2c(ci) + szc(c2),0)

= (S2c(//(fl = Ci,fe=C2)),0)

= 5Z(Ah=^K/3).(ci,c2)frK)

5Z(A[a::T][/3::T] h CiVi) = (wc(ci),0)
< (szc(ci) + szc(c2),0)

= {szc(n(a,ß).(c1,c2)),0)

3. The cases for c2 are exactly the same.

42

Pair

1.

SZ{A \=c^T) = (szc(a),l)

< {szc{ci) + szc(c2),0)

= (szc(cixc2),0)

2.

= SZ(A |=ci xc21\ST{ A x c'2))

SZ(A\=Cl\c[) = (S2c(ci),0)

< (S2c(ci) + S2c(c2),0)

= SZ(A^Clxc2frSr(c' L X 4))
3. Similarly for the c2 premises.

Arrow As with the Pair case.

Sum As with the Pair case.

Array

i.

SZ{A\=cl\T) =

<

(szc(c),l)

(sZc(c) + 1,0)

(szc(c array), 0)

2.

= SZ(A |= c array ff 5T(C arrc «2/))

SZ{A\=c\c') = (szc(c),0)

< (szc(c) + 1,0)

5Z(A j= c array ff c' array)

Lambda

i.

SZ{A\=k) =

<

{szK(k),0)

(szK(k) + szc(c),0)

(szc(\a::k.c),0)

2.

— SZ(A^=\a::k.ci\n{a::K) .*')

SZ(A \= k\n) = (^K(^),0)

< (szc(Aa::A:.c),0)

3.

= 5Z(At=Aa::ifc.cffn(a:: K).K')

SZ(A[a :: n] \= cff/c') = (szc{c),0)

< (szc(Xa::k.c),0)

= SZ{A\=Xa::k.c i\Tl(a::K).K')

43

App

1.

2.

5Z(A|=cifrn(a::K1).K2) = (szc(Cl),0)

< (s2c(ci) + S2c(c2),0)

= (szc(cic2),0)

= SZ(A (= Cl c2 fr {4/a}«2)

5Z(A[=C2^K1) = (szc(c2),l)

< (8Zc{CiC2),0)

= 5Z(A^Clc2fr{c2/o}K2)

5Z(Ahc2\c'2) = (s*c(c2),0)

< (s^c(cic2),0)

= SZ(A^Clc2i]{c'2/a}K2)

Record As before

Projl As before

Proj2

SZ(A \=ci\ E(a■::K1).K2) = (szc{c),0)

A < {szc{c) + 1,0)

= (szc(c.l),0)

= SZ(A |= cl i\ {c'.l/a}K2)

SZ(A^c\c') = (szc(c),0)

< (szc(c.l),0)

= 5Z(A (= cl i\ {C'.1/O}K2)

Let

1.

5Z(A |= Cl Ü KO = (s2c(ci),0)

< (szc(ci) + szc(c2),0)

= (szc(let a = ci inc2end),0)

= 5Z(A [= let o = ci inc2end f|-{ci/a}K2)

5Z(A[a :: KX] |= C2 fr K2) = («zc(c2),0)

< (•52C(C1) + S2C(C2),0)

= (szc(let a = ci inc2end),0)

= 5Z(A |= let a = cx inc2end ft {C\/O)K2)

44

SZ(A\=cM) =
< (szc(let a = ci in ci end), 0)

SZ(A |= let a = c\ in c<i end ff {c'j/a}/^)

45

